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Editor’s Note:  This report provides initial results for a research proposal funded by the Manchester Geographical Society on: 
“Identifying provenance changes in silt and sand size sediment using bulk sample geochemistry: the influence of methodological 
approaches on chemical signatures”. 
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1. Introduction
Loess deposits represent a key terrestrial climate archive (Marković et al., 2015) and provide an unparalleled 
opportunity to investigate the past dust cycle, a major component of the past climate system. These deposits 
also preserve evidence of its origins, critical to deciphering climatic signals in proxies, sediment transport, and 
dynamics, as well as factors controlling dust emission (Shao et al., 2011). 

Studies using geochemical proxies in loess have increased exponentially in recent years given the potential 
wealth of environmental information they can offer including weathering (Buggle et al., 2011; Hošek et al., 
2015; Krauß et al., 2016), provenance and sediment transport (Hao et al., 2010; Muhs et al., 2018; Skurzyński 
et al., 2020; Sun, 2002; Sun et al., 2007), palaeoclimate (Gocke et al., 2014; Guo et al., 2021; Schatz et al., 2015b), 
and even properties of luminescence dating (Fenn et al., 2020b). In particular, multi-site comparison studies 
have become very popular. There are however several methodological approaches available for obtaining the 
elemental composition of samples, and there is practically no data on cross-verification of the same research sites 
or samples using different methods. Therefore, any studies using published datasets assume the results from 
various methods are comparable. 

To test the impact of methodological approaches on geochemical results and their effect on environmental 
interpretation, 10 loess samples were analysed using three research methods: two Inductively Coupled Plasma 
(ICP) analyses with different preparation methods, and X-ray fluorescence (XRF). 

2. Methodology
To ensure a wide range of geochemical compositions driven by weathering pathways and/or varied sources, 
samples were selected from six loess-palaeosol sites across Europe; two from Biały KoŚcioł, Poland (Moska et al., 
2019), two from Tyszowce, Poland (Skurzyński et al., 2019), one from Złota, Poland (Skurzyński et al., 2020), one 
from Erdut, Croatia (Fenn et al., 2020a), one from Surduk 2, Serbia (Fenn et al., 2020b), and three from Slivata, 
Bulgaria (Fenn et al., 2021). All samples were dried and crushed in an agate mortar. 

“HF protocol”: ICP-MS analysis was conducted at the British Geological Survey, Keyworth. Samples were 
digested with a mixture of acids that included hydrofluoric acid (HF). Alongside all samples a series of blanks, 
duplicates and 3 reference materials were also digested which were measured to assess repeatability and to monitor 
drift. Following digestion, samples were analysed using an Agilent Technologies 8900 ICP-MS Triple Quadrupole. 

“LiB protocol“: ICP-MS and ICP-OES following lithium borate fusion was performed at the Bureau Veritas 
(formerly ACME) laboratory, Canada. Samples were first subject to loss-on-ignition to remove organics, following 
which fusion with lithium metaborate/tetraborate and digestion with HNO was carried out (analytical package 
LF202). Analytical precision RSD (relative standard deviation), as estimated from 5 measurements of reference 
sample STD SO-19, is less than ± 5% for most of the elements (only for Cs and W RSD is less than ± 10%). 

XRF analyses were conducted at the University of Liverpool and carried out using a Bruker S2 Ranger 
energy-dispersive X-ray fluorescence analyser with a PdX-ray tube and Peltier-cooled silicon drift detector. The 
analysis was conducted under helium and 20, 40 and 50 keV tube excitement conditions. Powder cups were 
filled with approximately 7g of sediment of each granulometric fraction, sealed with spectroscopic grade 6μm 
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polypro-pylenefilm (Chemplex 295 Cat. No. 425) and the sediment was hand pressed. Calibration used a set of 
up to 18 certified reference materials. 

3. Results and discussion
The UCC (Upper Continental Crust) normalised elemental composition of samples analysed using three methods 
for bulk sediment (Figure 1) shows significant differences in chemical composition between all methods. For 
example, XRF and “LiB protocol” show Zr (zirconium) and Hf (Hafnium) enrichment in relation to the UCC, 
whilst “HF protocol” analysis shows significant depletion in both elements. The concurrent shift in both elements 
is indicative of proportion of zircons in the material, with Zr and Hf enrichment indicating increased content. As 
loess is generally enriched in zircons, patterns demonstrated by “LiB protocol” and XRF are expected. The lower 
values obtained by “HF protocol” demonstrate the inability of hydrofluoric acid to fully digest resistant mineral 
phases. If enrichment/depletion in both elements was observed during a routine investigation, it likely would 
be interpreted as a change in source and result in an erroneous interpretation. The other area where an offset 
between elements is noted is TiO2 which appears to be lightly enriched where XRF and “LiB protocol” are used 
but depleted for “HF protocol”. This would have a significant impact on the commonly used Al2O3/TiO2 and 
Fe2O3/TiO2 ratios. Again, the distortion suggests that HF treatment is unable to dissolve Ti rich mineral phases. 
Encouragingly almost all the major elements patterns are similar across the methods though the specific values 
vary (e.g. CaO, Fe2O3). Therefore, whilst the values are off, the interpretation is likely to be similar. 

Figure 1: UCC-normalized multi-elemental spidergrams for all samples and methodologies. 

In the realms of the Rare Earth Elements (REE) the “HF protocol” and “Lib protocol” show overlapping 
results for the light REE but divergence for heavy REE. This again suggests that HF is unable to digest and 
dissolve resistant mineral phases. Overall, this work shows that the results between methods are unlikely to be 
comparable especially for trace and REE. Therefore, studies focused on comparison of sites should ensure that 
methods are comparable as otherwise this could result in erroneous provenance or weathering interpretations. 
It also follows that greater care should be taken with how geochemical data is reported, even when samples are 
sent off to commercial labs for analysis. 

4. Conclusions 
In conclusion, this research demonstrates that open-vessel HF treatment (“HF protocol”) prior to ICP analysis 
is not able to dissolve more resistant minerals, such as zircons. Consequently, the underestimation of e.g. Ti, Hf, 
Zr, and REE in comparison to the lithium borate fusion approach (“LiB protocol”), can result in differences in the 
interpretation of provenance changes. Moreover, this study demonstrates that cross method validation (even 
just for a couple of samples) would greatly improve confidence in the final results.
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